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Tricarbollides-Compounds of the Eleven-vertex Series of Tricarbaboranes 
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Alternative syntheses of the zwitterionic compounds 7 - L - n i d 0 - 7 , 8 , 9 - C ~ 6 ~ H ~ ~  (where L = H2N-, Me3N, and BufNH2) 
are reported from reactions involving the [nid0-5,6-C26~H~,]-  anion, the CN- anion and/or alkyl isocyanides RNC 
(for R = But); deamination of the Me3N derivative leads to the first unsubstituted eleven-vertex tricarbaboranes 
nido-7,8,9-C3B8HI2 and [nido-7,8,9-C3B8H1 I]-. 

The cyanide anion1 and isonitriles2 have been previously shown 
to be susceptible to nucleophilic attack by polyhedral boron 
hydrides in the endo-substitution manner, resulting in the 
insertion of the carbon atom into the cluster area. A high-yield 
monocarbon-insertion reaction has been observed more re- 
cently between the [arachno-4,6-C2B7H12] - anion and acetoni- 
t1ile3.~ or polarized alkynes4 by Sneddon's group. These 
reactions yielded a large number of C-alkylated compounds of 
the nine- and ten-vertex tricarbaborane series3-5 and thus 
greatly enriched the largely unexplored class of tricarbaborane 
and metallatricarbaborane clusters.~g The only parent (un- 
substituted) tricarbaboranes so far reported have been the 
uniquely structured compounds cZoso-C3B~H710 and hypho- 
C3B4H12.11 Here we report our preliminary results on the 
reactions involving the [nido-5,6-C2B8H1 1] - anion,12 cyanide 
anion and/or alkyl isocyanides that lead to a number of the long 
expected compounds of the eleven-vertex nido tricarbollide 
series, zwitterionic derivatives 7-L-nido-7,8,9-C3B8H10 (where 
L = amines) and to the parent tricarbaboranes 7,8,9-C&H12 
and [7,8,9-C3B8H1 J-. 

Reaction between the [nido-5,6-C2BgH11]- anion 1,12 gen- 
erated in situ by treatment of the hexane solution of the neutral 
5,6-C2B8H12 (reaction scale 10 mmol) with 2 equiv. aqueous 
NaCN at ambient temperature for 24 h, followed by precipita- 
tion with aqueous NMe4C1, has led to the isolation of NMe4+[7- 
H2N-nido-7,8,9-C3B8H1o]- [compound 2a of general structure 
2 in Scheme 1, paths a and b, R = free electron pair] in 30% 
yield [see also eqn. (l)]. Alternatively, treatment of the 

(1) 
[C2B 8H11]- + CN- + H20 + [ H ~ N - C ~ B ~ H ~ O I -  + OH- 

1 2a 

aqueous layer by Me2S04 in alkaline medium, followed by 
filtration of the precipitate and its purification by preparative 
TLC, using 5% MeCN-CH2C12 as the mobile phase [&(prep.) 
0.301, has led to the isolation of 7-Me3N-nido-7,8,9-C3B8Hlo 
2b (yield 27%, based on carbaborane 1 used). 

Another source of the zwitterionic compounds of type 2 is 
provided by the synthesis involving anion 1 (Na+ salt, generated 
in situ by treatment of carbaborane 1 with NaH, reaction scale 
4 mmol) and BufNC in glyme (1,2-dimethoxyethane) [room 
temp., 2 d, see eqn. (2) for R = But], followed by evaporation 

H+ 
[CZBgHIll- + RNC + [RNH-C3BgHlo]- + R N H ~ - C ~ B ~ H ~ O  

1 2c- 2c 
of the solvent, addition of equal amounts of CH2C12 and water, 
and acidification with diluted hydrochloric acid [path b]. This 
resulted in the isolation of 7-ButNH2-nido-7,8,9-C3BgH1o 2c 
from the dichloromethane extracts [yield 53 % upon purification 
by preparative TLC in 100% CH2C12, Rdprep.) 0.11. Methyla- 
tion of compound 2c (reaction scale 1.5 mmol) with excess Me1 
(4 equiv.) in the presence of ca. 4 equiv. NaH in glyme (reflux 
for 2 h), followed by evaporation of the solvent, addition of 
water and repeated extraction with 50% MeCN-CH2C12, led to 
the isolation of the trimethylamine derivative 2b as the main 
product. This was isolated in 37% yield by preparative TLC [5% 
MeCN-CH2C12, Rdprep.) 0.301 from the organic layer. Other 

(2) 

chromatographic fractions yielded 7-ButNHMe-7,8,9-C3B8Hlo 
and methylated derivatives of 3, which will be characterized in 
more detail in a full paper. 

The Me3N functionality in 2b was removed by treatment with 
2 equiv. sodium metal (reaction scale 10 mmol) in THF (room 
temp., 24 h) in the presence of naphthalene. The anticipated 
Na2[7,8,9-C3B8Hlo] intermediate thus formed was then decom- 
posed with a slight excess of water and the THF evaporated. 
Addition of hexane and CF3C02H (ca. 3 equiv.), followed by 
evaporation of the hexane, TLC chromatography [ 100% 
hexane, Rdprep.) 0.201, and sublimation of the solid residue in 
vacuo at ca. 60 "C, yielded the neutral tricarbaborane nido- 
7,8,9-C3B~H12 3 [path c] in 60% yield (based on 2b). 
Deprotonation of 3 in the NMR tube in CD3CN with a threefold 
excess of proton sponge [PS, 1,8-(Me2N)2C,oH~] led to 
complete removal of the pH( 10,ll) bridging hydrogen and to 
quantitative formation of the parent 'tricarbollide' anion [nido- 
7,8,9-C3B&11]- 4 [path 4. The crystalline salt [PSH]+ [nido- 
7,8,9-C&8Hll]- can be obtained by the addition of 1 equiv. PS 
to a CH2C12 solution of compound 3 that was overlaid by a 
twofold amount of hexane. 

As shown in Scheme 1, the formation of compounds of type 
2 is consistent with the hydrogenation of the highly polarized 
isonitrile/cyanide N=C triple bond by the bridging proton of 
anion 1 under concomitant attack of the nucleophilic isonitrile/ 
cyanide carbon at the ele~trophilic3.~ C(6) centre of 1 and 
insertion of this carbon into the cluster area under the formation 
of anions 2- (for R = free electron pair or But). Protonation of 
2- leads directly to either anion 2a or the zwitterionic 
compound 2b. 

The constitution of the tricarbaborane compounds discussed 
above has so far been based on high-field multinuclear, 
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selective, and [11B-l1B] COSY NMR measurements.? These 
have confirmed unambiguously a cluster configuration with 
three { CH} cluster units in adjacent positions within the open 
pentagonal face of the eleven-vertex nido cage. As seen in Fig. 
1, the IlB NMR shifts for the neutral carbaborane 3 correlate 
only approximately with those for the isoelectronic, but not 
isostructural, anion [nido-7,8-C2BgH12]- 5,13 evidently owing 
to the different character of the ‘extra’ hydrogen atom in both 
species. Unfortunately, the absence of the corresponding data 
for the nido ‘di~arbollide’l~ dianion [7,8-C2BgHI 112- does not 
permit straightforward comparison to the 1lB shielding patterns 
for the isostructural compounds of type 2 and for the parent 
anion 4. Noticeable are the remarkable upfield shifts of the high- 
field IIB(1) and 11B(2,5) resonances (A6 ca. 12 and 16 ppm, 
respectively) as a consequence of the removal of the bridging 
proton from compound 3, whereupon the spectrum of the anion 
4 re-adopts the original features characteristic for the iso- 
structural compounds of type 2. Mass spectra? of the zwitter- 
ionic compounds of type 2 and of the neutral tricarbaborane 3 
exhibit, besides other fragmentation patterns, the expected high- 
mass molecular cut-off corresponding to the highest isotopomer 
of the proposed molecular ion. 

The compounds described above are, as far as we are aware, 
the first representatives of the long expected eleven-vertex nido 
family of tricarbaboranes; species of type 2 and the parent anion 
4 being isostructural analogues of the ‘di~arbollide’l~ anion 
[7,8-CzBgH1 1]2-. The straightforward availability of these 
stable compounds from 5,6-C2BgH12 makes them accessible for 
further investigations, such as isomerisation, boron degradation 
and, in particular, metal insertion reactions. Relevant researches 
into these new areas of carbaborane chemistry are in pro- 
gress. 
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Fig. 1 Stick representations of the chemical shifts and relative intensities in 
the 1lB NMR spectra of the eleven-vertex nido compounds 7-L- 
7,8,9-C3B8Hlo [where L = H2N- 2a, Me3N 2b, and Bu‘NH2 2c], 
[7,8,9-C3B8Hll]- 4, 7,8,9-C3B8HI2 3, and [7,8-C2B9H& 5. Hatched lines 
interconnect equivalent positions in all compounds under comparison. 
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Footnote 
t Spectroscopic data. NMR data for compounds of types 2, 3, and 4 
{assignment, 6(11B) [S(lH)]} in CD3CN solutions at 294-303 IS: For 2a 
(NMe4+ salt) BH(6), -16.1 [+0.98]; BH(2,11), -16.8 [+1.25, +1.11]; 

+0.91]; BH(l), -47.0 [+0.08]; for 2b BH(6,11), -16.2 [+1.32, +1.09]; 

+1.17]; BH(3), -23.7 [+1.60]; BH(1), -47.2 [+0.18]; for 2c [2H6]acetone 

ca, +1.6]; BH(3), -20.2 [+1.66]; BH(4,5), -22.7 [+1.14, ca. +1.60]; 
BH(l), -47.1 [+0.18]; for 3 BH(2,5) +0.45 [+2.65]; BH(3,4), -19.0 

[+1.15]; for 4 BH(6), -15.5 [+0.97]; BH(10,11), -16.6 [+1.55]; BH(2,5), 

assignments [tentative for compounds of type 2 owing to closely spaced 
resonances in the range of 6(11B) ca. -14 to -241 by [llB-llB] COSY 
experiments and lH{ llB(selective)} spectroscopy. Additional 6(1H) data 
for: 2a NMe4+ +3.50 (12 H), H2N +3.07 (2 H), CH(9) +2.51, CH(8) +1.58; 
for 2b NMe3 +3.09 (9 H), CH(9) +2.70, CH(8) +1.79; for 2c H2N +7.57 (br, 
2 H), CH(9) +2.82, But + 1.62, CH(8) +1.78; for 3 CH(8) +3.76, CH(7,9) 
+3.08, yH(10,ll) -2.13; for 4 CH(7,9) +2.15, CH(8) +1.48. MS (70 eV EI 
ionisation): for 2b m/zmaX 193 ( l l%,  M+), 59 (32%, Me3+) ;  for 2c mlz,, 
207 (4%, M+), 192 [50%, (M-Me)+], 57 (28%, But); for 3 rnlz,, 136 (370, 
M+) . 

BH(10), -17.3 [+1.44]; BH(4), -19.8 [1.58]; BH(3,5), -24.1 [+1.49, 

BH(2), -18.0 [+1.72]; BH(10), -19.2 [+1.42]; BH(4,5), -21.9 [+1.9, 

BH(6), -14.0 [+1.29]; BH(11), -14.9 [+1.49]; BH(2,10), -18.5 [+1.49, 

[+1.85]; BH(10,11), -20.0 [+1.84]; BH(6), -25.9 [+0.91]; BH(1) -35.2 

-20.6 [+1.09]; BH(3,4), -23.6 [+1.47]; BH(l), -47.4 [+0.05]; NMR 
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